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Abstract. A two-site single polaron Holstein model is studied in presence of a difference in bare site
energies (eq = €2 — €1) using the perturbation theory with the variational modified Lang-Firsov (MLF)
phonon basis. The polaronic ground-state wave function is calculated up to the fifth order of perturbation.
The effect of €4 (acts as a strength of diagonal disorder) on the polaron crossover, polaronic kinetic energy,
oscillator wavefuncion and polaron localization are studied. Considering a double-exchange Holstein model
with finite €4, role of disorder on the properties of the double-exchange system is also discussed.

PACS. 71.38.-k Polarons and electron-phonon interactions — 63.20.kr Phonon-electron and phonon-phonon

interactions

1 Introduction

Study of narrow band electronic systems with strong
electron-phonon (e-ph) interaction has long been an ac-
tive research area in condensed matter physics. The field
has drawn renewed interest following evidence of pola-
ronic charge carriers in underdoped high-T, cuprates [1],
manganites [2], and organic superconductors. The one-
dimensional polaron problem is also relevant in semicon-
ductor physics, quantum dots [3] and linear conjugated
organic polymer conductors [4]. The simplest model for
studying polarons is the Holstein model [5] where an
electron in a narrow band interacts locally with optical
phonons. For large e-ph coupling the polaron is a small
polaron with high effective mass, while for small coupling
it becomes a large polaron having a much lower effective
mass for a finite adiabatic parameter. The crossover from
a large to a small polaron and the corresponding change
in the polaronic properties in the ground state have been
studied for the Holstein model by different groups [6-9]
using various methods enlightening our understanding in
this field. However studies on the nature and properties
of polarons in presence of disorder are few and need much
more attention. The imperfections or disorder may play an
important role in complex materials (high-T,. oxides, man-
ganites etc.) where signatures for polaronic carriers are
found. Recently the small polaron concept has been used
to explain the charge motion in DNA where the electronic
band is very narrow and the presence of different kind of
molecular units induces large disorder potential [10].

In absence of any disorder, translational symmetry en-
sures that the polaronic ground state is delocalized how-
ever large is the e-ph coupling strength provided other
parameters (electronic hopping, phonon frequency) are
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finite. The large to small polaron crossover is a continuous
one [8], which is consistent with the ground state proper-
ties, being analytic functions of e-ph coupling [11]. Local-
ization requires a breakdown of the translational invari-
ance which may be achieved through randomness of the
site potential or hopping. The effect of site diagonal dis-
order on polaronic properties has been addressed by some
authors. Shinozuka and Toyozawa [12] studied disorder in-
duced self-trapping in a tight binding model in which the
local site energies are randomly distributed between two
values and found that the exciton-lattice interaction acts
with the disorder to produce severe localization associated
with a self-trapped exciton. In his study the lattice vibra-
tion was treated as classical oscillators. Bronold et al. [13]
studied similar model but with an infinite coordination
number within the dynamical coherent potential approx-
imation. However the limitation of the coherent potential
approximation is that it cannot fully distinguish between
localized and itinerant states. Bronold and Fehske [14] im-
proved the method to overcome the above shortcoming.
They followed statistical dynamical mean field theory to
predict localization of small polarons by extremely small
disorder. However a proper study of the effect of disor-
der on the polaron crossover is not made in any of the
above investigations. In the present work we consider a
two-site cluster with different site energies. This is the
minimal system to study the competition of the inter-site
electronic hopping with the localization induced by the
combined effect of the e-ph coupling and the site energy
disorder. Difference in site energies would remove the two-
fold degeneracy of the system in the absence of hopping
and would tend to localize the electron in the lower poten-
tial site. For convenience we will refer to the difference in
site energies as disorder strength because it partly mimics
the role of disorder in larger systems. Another reason for
choosing a two-site Holstein model is that almost exact
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results may be obtained for such a system by the pertur-
bation method [15] using a modified Lang-Firsov (MLF)
basis [16]. For the Holstein model the interaction is very
short-ranged and the essential physics related to the po-
laronic behavior for a larger system is similar to that of
a two-site system. In studying a Hubbard-Holstein model
similar conclusion has been reached in reference [17]. The
relevance of studying a two-site system in the context of
Holstein and Holstein-double exchange models has been
discussed in details in reference [18].

In Section 2 we discuss the formalism and perturba-
tion calculations. In Section 3 we present the results ob-
tained by MLF method and discuss the role of the disorder
strength on the polaron crossover and the kinetic energy
of the system. The localization of the polaron and ground
state polaronic wavefunction are also discussed. Extension
of this method to the double-exchange model is included
in Section 4. Finally, a summary of the results are pre-
sented in Section 5.

2 Formalism

The two-site single-polaron Hamiltonian is

H =¢€nq + eang — Z t(chc% + czaclg)
(e

+w D nig(bi + b)) +w Y bl (1)

1,0 7

where ¢ =1 or 2, denotes the site. €; and e3 are the bare
site-energies at site 1 and 2, respectively. ¢;, (cja) is the
annihilation (creation) operator for the electron with spin
o at site ¢ and n;, (zclacw) is the corresponding number
operator, g denotes the on-site e-ph coupling strength, ¢ is
the usual hopping integral. b; and bl-L are the annihilation
and creation operators, respectively, for the phonons cor-
responding to interatomic vibrations at site ¢ and w is the
phonon frequency. This Hamiltonian has spin degeneracy
for the one electron case so the spin index is redundant.

Introducing new phonon operators a = (by + by)/v/2
and d = (b — by)/+/2, the Hamiltonian is separated into
two parts (H = Hq + H,):

H; = eng + eang — t(C—{CQ + cgcl)
+wgi(n1 —n2)(d +d') +wd'd

and H, =wa'a — wn2g3_

(2)
(3)

where g4 = g/\/ﬁ, a = a + ngy. H, describes just a
shifted oscillator, while Hy represents an effective e-ph
system where phonons couple with the electronic degrees
of freedom. In reference [15] we have shown that the MLF
perturbation method works much better than the Lang-
Firsov (LF) method for a large region of parameter space
where the retardation is important. In the strong-coupling
limit the MLF method reduces to the LF method and it
works well there. We use the MLF transformation where
the lattice deformations produced by the electron are
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treated as variational parameters [16,19]. For the present
system, Hy = ef!Hye™F where R = A(n; —ns)(d" —d) and
A is a variational parameter describing the displacement
of the d oscillator.
The transformed Hamiltonian is then obtained as
Hy=wd'd+ (61 — €p)n1 + (€2 — €p)n2
—t [cley exp(@A(dt — d))
+ chey exp(=2(dt — d))]
+w(gy — A)(m — na)(d +d")
where €, = w(2g4+ — ).

(4)

For the single polaron problem we choose the basis set,

[+, N) = (a1¢] +a2¢})[0)e|N) pi

=) = (aze] = arc])|0)e| N )pn (5)
where |+) and |—) denote the electronic states and |N) de-
notes the Nth excited oscillator state in the MLF phonon
basis. The normalization condition requires a? + a3 = 1.
The unperturbed part of the Hamiltonian is chosen as

Hy = wde—i—(el —ep)n1 +(e2—€p)na —te (ci@—i—c;cl) (6)

where t. = t exp(—2)\?). The remaining part
H, = (Hq — Hyp) is treated as a perturbation. The states
|+, N) are the eigenstates of the unperturbed Hamilto-

nian (Hp) for r = a1/az = [eq + \/ €q4? + 4t.2]/2t. where

€4 = €a—€1. The corresponding eigen energies are given by

(e1+e2)

EE)N:Ner 5

1
—€6F 3 (€1 — €2)2 +4t.2 (7)

The state |+,0) has the lowest unperturbed energy,
E(()O) =€+ % —€— %\/m

The general off-diagonal matrix elements between the
states |4, N) and |+, M) are calculated for (N — M) > 0
as follows:
for even (N — M),

(N, £|H|£, M) = xteﬁ (8)
(¥, 7, M) =t )

for odd (N — M),
(N, s, M) = 5V R = N Ty v (10

<N7:l:|H1|:FaM> = ite+\/NW(g+7>‘) 5N,M+1

(11)

It may be noted that for the ordered case (e4=0, hence
r=1) the off-diagonal matrix elements (N, +|H; |+, M) are
nonzero only for even (N — M) while (N, +|Hq|F, M) are
nonzero only for odd (N — M).

2r
(147r2)
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To find out the variational phonon basis as a function
of e-ph coupling, the unperturbed ground state energy

E(SO) is minimized with respect to A [15] and we obtain

wg+
4.2

Ve€a2+4te?

The perturbation corrections of different orders to the
ground-state energy and the wavefunction may be calcu-
lated using the general off-diagonal matrix elements in
equations (8-11). The ground-state wave function in the
MLF basis may be written as,

)\:

w + (12)

G) =

e |Ho+ o N+ D eyl N

N=1,2,.. N=1,2,..
(13)
The coefficients cﬁ are obtained in terms of the off-
diagonal matrix elements and unperturbed energies and
Ng¢ is the normalization factor.

The correlation functions involving the charge and the
lattice deformations (njuq)o and (nius2)op, where u; and
ug are the lattice deformations at sites 1 and 2 respec-
tively, produced by an electron at site 1, are the standard
measure of polaronic character and indicate the strength
of polaron induced lattice deformations and their spread.
Following reference [15], the correlation functions may be
written as

(niuy) = % [—(g+ + A)% + ﬁ—g] (14)
() = 3 | ~(0 =N - 22 (15)
where Ag = (G|ny(d + d")|G) = (1%7”2)(7“01 +r?ch)

i 2
+ Y VN Ly [Penein

=1

N
+ r(ch}H + CEC;\IH) + C;/C;VH]
d By = (Gln|G) - +§: !
an 0 =(G|M|G) = ——~ —
(I+r2) = (1+1?)
x [2reyek + | P + leyl?]

The static correlation functions in equations (14) and (15)
are calculated for different €4 to examine the role of the
disorder on the polaron crossover.

The kinetic energy of the system in the ground state
is obtained as

Ex g = (G|H:|G)

1

=g |~ 2emaz+2 >N chile, NIH0, +)

e=+ N#0

Y D (e NIH M, )

e,e/=+ N,M#0

(16)
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where Hy = —t[cl o exp(2M\(dT —d))+cher exp(=2X (dT —d))]
is the kinetic energy operator in the MLF basis. The
occupation number n(k) of the charge carrier for the
ground state within MLF method is also calculated as

1
nox =5 (el £ch)(er £ ) (17)
(GlrarI6) = 5 |1 252 (18)

where 0,  denotes the values of the wave vector k. There-
fore, it basically reflects the nature of the kinetic energy.

The ground-state wave function for the d-oscillator is
obtained from equation (13) by using the wavefunction for
the Nth excited (MLF-displaced) harmonic oscillator for
|£, N).

1
w1/44/2np)

where H, (x) is the Hermite polynomial of degree n and
z¢ is the displacement of the oscillator due to the MLF
transformation.

To study the localization effect due to disorder in site
energy we calculate |.(1|G)|? and |.(2|G)|?. These are the
probabilities that the polaron in the ground state (|G))
lies at site 1 and site 2, respectively.

n(x) = (z|n) = e_(x_”")zmHn(x —x9) (19)

1 _
(UG = 5= {larl* + > larel +azei || (20)

¢l N0 |

1 _
RIGH = 5= |lazl* + > lazely —areq || (21)

¢l N0 |

3 Results and discussions

In this paper all the results are derived by calculating
the ground-state wavefunction up to the fifth order of
perturbation. Rongsheng et al. [20] compared our MLF-
perturbation results for the ordered case [15] with their
exact results and found that the MLF method up to the
fifth order gives exact results for ¢ = 0.5 (in a scale where
w = 1) whereas for higher values of ¢ (=1.1 and 2.1) very
accurate results are produced by the MLF perturbation
method for both strong and weak coupling regions. How-
ever in a narrow region of intermediate coupling the per-
turbation results for high values of ¢ deviate from the exact
results. These findings are fully consistent with our conclu-
sions in reference [15]. In this paper we present the results
mainly for the nonadiabatic regime (¢/w < 1.0) for which
the convergence of the MLF-perturbation series for both
ordered and disordered cases is found to be very good in
the entire region of the e-ph coupling strength. For the
ordered case, the convergence in energy and correlation
functions have already been reported in reference [15] and
that for the wave function in reference [21].

In Figure 1 we plot the variation of the correlation
functions (nju1) and (njus) with g4 for t/w = 0.5 and
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Fig. 1. Plot of the correlation function (niuz) versus g for
t/w = 0.5 for different values of e4. Inset: on-site correlation
function (nius).

for different values of the disorder strength ey. For in-
termediate coupling, (njuz) has appreciable values and
(n1u1)/{n1) (shown in inset) deviates downwards from its
small polaronic LF value of 2¢g. These are the signatures
of retardation and directly show the delocalization of the
polaron. With increasing e, the value of (njus) decreases
and (njuq) shows less deviation from its LF value. This
signifies a reduced retardation effect with increasing dis-
order strength.

In Figure 2a we plot the correlation function
X = (n1(u1 — u2))/2g+(n1) as a function of e-ph coupling
strength to examine the behavior of the large-to-small po-
laron crossover. In the small polaron limit the retardation
effect is negligible and x gets its standard LF value (=1).
For a large polaron, the value of yx is lower. Figure 2a
shows that the size of the polaron becomes more localized
with increasing disorder strength. The polaron crossover
is continuous, but a change in the curvature of x vs. g+
plot is observed at a point (in g4 space) in the crossover
region which may be taken as the crossover point. The
crossover point shifts to lower value of g1 as €4 increases.
Thus the disorder favors formation of small polarons.

In Figure 2b the kinetic energy of the polaron is plot-
ted as a function of g4 . It is seen that the kinetic energy is
suppressed by the disorder in the coupling range from low
to intermediate values of g, while disorder has almost no
effect on the kinetic energy for strong coupling. In general,
it is well known that the polaronic kinetic energy shows
three characteristic features [6,22]: (i) for small coupling
the kinetic energy is very weakly suppressed from its non-
interacting (g = 0) value, (ii) it shows a rapid (exponen-
tial) suppression in the crossover region and (iii) a much
weaker suppression (oc1/g?) at strong coupling. Same fea-
tures are evident in Figure 2b. The kinetic energy in equa-
tion (16) has three terms. The first term is the contribu-
tion to the kinetic energy from the unperturbed ground
state. This arises from the diagonal hopping and is sig-
nificant in the range from low to intermediate couplings.
The second term originates from the non-zero matrix el-
ements of H; between the unperturbed ground state and
the polaronic states with higher phonon number, and the
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Fig. 2. (a) The variations of x = (n1(u1 — u2))/2g+(n1) with
g+ for different values of €4 for t/w = 0.5. (b) The variation
of the kinetic energy Fx.g with g4 for t/w = 0.5 and ¢q = 0,
0.5 and 1.0. (c) Different parts of the kinetic energy (see the
three terms in Eq (16) referred as K.E(1), K.E(2) and K.E(3),
respectively) vs. g4 for different eq.

third term is due to the hybridization of polaronic states
with higher phonon numbers through H;. We plot these
contributions separately as a function of g4 in Figure 2c
for ¢4 = 0 and 0.5. It is found that the first contribution,
which is due to the diagonal (coherent) hopping, is sup-
pressed substantially with increasing disorder strength.
The second part of the kinetic energy (K.E(2)) originates
from non-diagonal hopping. This part develops in the in-
termediate range of coupling and persists upto the strong
coupling region. In fact this is the sole contribution to
the kinetic energy for strong-coupling. It is seen from Fig-
ure 2c¢ that this non-diagonal hopping contribution to the
kinetic energy increases with disorder in the intermediate
range of coupling, but is not affected by disorder in the
strong coupling region. This leads to almost disorder in-
dependent kinetic energy at strong coupling. It may be
mentioned that contribution from the third term is too
small to show up in the figure for the range of our study.

In Figure 3, we have plotted the occupation number
n(k) of the polaron for the ground state with e-ph cou-
pling. The difference between n(k = 0) and n(k = )
depends directly on the delocalization of the polaron (see
Eq. (18)). In absence of hopping this difference vanishes.
With increasing e-ph coupling the difference between n(k)
reduces as the kinetic energy is more and more suppressed.
For the disordered case and in the range from weak to
intermediate coupling, the difference in occupations re-
duces further owing to disorder-induced suppression of the
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MLF (€4=0)
exact (g4=0) +
MLF (§=0.5) ------

n(k)

8.

Fig. 3. The wave vector dependence of the occupation number
n(k = 0, ) of the charge carrier for the ground state with e-ph
coupling within MLF method for €;=0 and 0.5. Exact results
(for e4=0) from reference [23] is also plotted for comparison.

kinetic energy. In the strong-coupling regime, n(k) does
not show any change with €4 because the kinetic energy
is almost independent of €4 in this region. The exact re-
sults for the occupation number [23] for the ordered case
(eq = 0) are also shown in Figure 3 for comparison with
our MLF results.

In Figures 4a—d we have shown the ground-state wave
functions of the d oscillator for different values of e-ph
coupling for both the ordered and disordered cases con-
sidering that the electron is located at site 1. The re-
sults for the ordered case have been discussed in previous
works [23,15,20]. The main changes, which are observed
for the disordered case (¢4 = 1.0) in the antiadiabatic
regime, are as follows: (i) for weak coupling (g4 = 0.4) the
wave function, which shows displaced Gaussian-like single
peak, is slightly more shifted; (ii) for intermediate coupling
(9+ = 1.3), the additional shoulder, which appears (at the
right side of the main peak) for the ordered case, is absent
in presence of disorder; (iii) for strong coupling (g4 = 2.0)
though the wavefunction around the main peak is identical
for both cases, the additional small broad peak, observed
for the ordered case, is not found for the disordered case.
The first feature indicates that the on-site polaronic defor-
mation is larger for the disordered case; while the second
feature may be due to the reduced retardation effect. The
third feature, i.e., disappearance of the additional broad
peak for the disordered case, has a contradiction with the
behavior of the kinetic energy. Both this broad additional
peak and the kinetic energy in the strong-coupling regime
are determined by the coefficients cﬁ in equation (13).
A logical question then arises why the broad peak in the
oscillator wave function is modified by the disorder while
the kinetic energy in that region is unaffected. In Figure 4e
we plot cﬁ versus N for g4 = 2.0 for both ordered and
disordered cases. For the ordered case cj is nonzero for
odd N, while c} is nonzero for even N. For the disordered
case both the coefficients ¢, and cj\} are nonzero for any
N. For strong coupling, the reduced polaronic hopping
makes the value of r (see the expression of r after Eq. (6))
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Fig. 4. Oscillator wave function (not normalized) vs. z with
t/w = 0.5 for e = 0 and 1.0 for (a) g+ = 0.4, (b) g+ = 1.0,
(c) g+ = 1.3 and (d) g+ = 2.0. (e) The coeflicients c% (see
Eq. (13)) of the ground state wave function with phonon num-
ber N for t/w = 0.5 and g4+ = 2 for ¢4 = 0 and 1.0. Solid curve
gives the value of cy for odd N and cj; for even N for the
ordered case. For disordered case the thick dashed curve shows
c}; and the thin dashed curve shows cy. (f) Magnitude of the
coefficients (|c%y|) are shown for the same case as (e).

very large in case of disorder. As a consequence we find
that c} takes negligible value except for N = 1, while
cy is appreciable for both odd and even N. ¢, changes
sign alternately with N. However, the magnitude of the
coefficients (|c%|) for any N do not change much with
disorder strength in the strong-coupling regime (shown in
Fig. 4f). In this region we observe that the kinetic energy
essentially depends on the magnitude of c%; rather than
on its sign, hence it remains almost unaffected by disor-
der. However, the oscillator wavefunction which is given
by 3" n.e ¢ |N)pn, depends also on the sign of ¢, and is
affected by the disorder.

In Figure 5 we plot |(1|G)|? and |.(2|G)|?, which give
the probabilities that the polaronic charge carrier in the
ground state (|G)) lies at site 1 and site 2, respectively.
For the ordered case these probabilities are same (=0.5)
for any value of the coupling. With increasing disorder
strength these probabilities differ from 0.5; the site with
lower site-energy has higher probability of being occu-
pied than the other. This difference in the occupancy in-
creases rapidly during polaron crossover as a consequence
of rapid suppression of the polaronic hopping (t.) with
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Fig. 5. Plots of |(1|G)|* and |.(2|G)|? versus g for t/w = 0.5.
|e(1|G)|? and |(2|G)|? are the probabilities of site 1 and site 2
being occupied by the electron, respectively. (a) The solid line
for €4 = 0, thick dashed line for ¢4 = 0.1 and thin dashed line
for eq = 0.5; polaron crossover (x) is also shown. (b) The same
curves for ¢ = 0.001. (c) Plots of x and |.(1|G)|* for different
values of t. x is denoted by different symbols and | (1|G)|* by
broken line.

increasing g4 in the crossover region. For strong-coupling
regime |.(1|G)|?> becomes almost 1 while |.(2|G)|? ap-
proaches to zero showing localization of the polaron at
site 1. This localization as well as the correlation function
x are shown in Figures 5a and 5b for ¢; = 0.5, 0.1 and
0.001. The figures show that the polaronic crossover pre-
cedes the localization for such values of €4. In Figure 5c
similar plots are presented for different values of t/w < 1.5
and €4 = 0.5. With increasing ¢ the polaron crossover and
the localization occur at higher values of e-ph coupling
as expected. The localization is abrupt but continuous for
larger values of ¢ while the polaron crossover is still very
smooth for t/w < 1.5.

In Figure 6 we plot y and |.(1|G)|? as a function of
disorder strength for different values of e-ph coupling with
t/w=0.5. For very weak coupling (g4 = 0.1) the polaron
crossover is induced by disorder potential and is very
smooth. Here the localization and the polaron crossover
occur almost simultaneously but none of them is com-
plete even at ¢4 = 2. For gy = 0.4, which is also in the
weak coupling range, the localization follows the polaron
crossover and a large value of disorder strength is required
for localization. For intermediate coupling (g4 = 1) the
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Fig. 6. Plots of x and |(1|G)|? versus ¢4 for different values
of g+ with t/w = 0.5. x is denoted by different symbols and
|e(1|G)|? by broken line.

localization takes place in the small polaron region and
95% of the localization is achieved within €q/t ~ 1. For
higher values of coupling the polaron would be a small po-
laron even in absence of disorder and localization would
occur for a small value of disorder strength. Our study
points out that when the e-ph coupling is in the interme-
diate range, localization may be achieved with a disorder
strength of the order of half (electronic) bandwidth of the
system; this has also been pointed out in reference [24] in
the context of manganites. For small e-ph coupling, dis-
order strength larger than the bandwidth is required for
localization.

4 Two-site Holstein model with double
exchange: effect of disorder

The relevant Hamiltonian for studying a two-site double
exchange Holstein model in presence of antiferromagnetic
interaction between core spins is given by [18,25]

H =e1ny + eang — Zt 005(9/2)(010020 + cggclg)
g

+ ngnw(bi + bj) +w Zbl—tbi +JS51.5 (22)

1,0 7

where S, S5 represent the local core spins (for manganites
it is the spin of ¢, electrons) at sites 1 and 2, respectively
and @ is the angle between them. J is the superexchange
antiferromagnetic interaction between the neighbouring
core-spins S. The transfer hopping integral (¢) of the itin-
erant electron is modified to ¢ cos( g) because of the dou-
ble exchange process which originates from strong Hund’s
coupling between the spins of the core electrons and itin-
erant electron [26]. Here we would treat the core spins
classically. For manganites the core spins have S = 3/2.
However, for small values of J/¢, the qualitative behavior
of the phase diagram of the two-site Holstein-double ex-
change model does not depend on the value of the spin
or hopping as observed in reference [18]. Furthermore,
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Edwards and his group [24] pointed out that for such
models the resistivity and transition temperature 7. do
not vary much with S, so that classical spin is a conve-
nient approximation to S = 3/2 spins. Considering the
out-of phase phonon mode which only couples with the
electronic degrees of freedom and treating the spin classi-
cally, we obtain the MLF transformed Hamiltonian [25] as

Hy=wd'd+ (1 — ep)n1 + (€2 — €p)na — tcos(g)
X [CJ{CQ exp(2A(df — d)) + cgcl exp(—2X(d" — d))}
+w(gy — N (n1 —no)(d+d") + JS?cosh  (23)

In our previous work [25] we studied the above Hamilto-
nian for a single polaron as a function of e-ph coupling for
the ordered case (e3=€2) using perturbation theory with
the variational MLF basis. We found that the nature of
the ferromagnetic (FM) to antiferromagnetic (AFM) tran-
sition as well as that of the polaronic state depends on the
relative values of J and ¢. For small values of JS?/t the
magnetic transition does not coincide with the polaronic
crossover and a FM small polaronic state exists between
a large polaronic FM state and extremely small polaronic
AFM state. Similar phase diagrams have also been ob-
served for both adiabatic and antiadiabatic limits in ref-
erence [18] for small values of JS?/t. Here we will examine
the effect of site-energy disorder on such polaronic state
and crossover. We have followed the procedure of our pre-
vious work [25] to find out the ground state properties of
the double exchange Holstein model with site disorder.

In manganites the ratio of the site energy disorder po-
tential to the half band-width, when calcium is doped
in LaMnQOg, is about 0.4 [24]. The value of the disorder
strength used in the present work is of that order. It may
be mentioned that previous studies [27] with a double ex-
change model have shown that the metal-insulator (MI)
transition due to the off-diagonal disorder (associated with
random spins in the paramagnetic phase) requires also a
large diagonal disorder strength. This led to the conclusion
that disorder alone cannot account for the MI transition
in manganites and an e-ph coupling of intermediate range
is needed for this purpose [24].

In Figures 7a and 7b we plot the angle (f) between
the core spins, the correlation function x = (nq(u; —
u2))/2g+(n1) and the kinetic energy (Ex. g) as a function
of g4 to show the FM-AFM transition, polaron crossover
and the polaron-delocalization energy for both the ordered
and disordered cases. In presence of disorder, the FM-
AFM magnetic transition and polaron crossover occur at
lower values of g . The reason behind this behavior is that
disorder effectively reduces the hopping, hence favors for-
mation of the small polaron and the AFM phase. In the
AFM phase, the polarons are small polarons with almost
vanishing kinetic energy. However, the FM phase may have
a large polaron character or a small polaron character de-
pending on values of g4. For low values of ¢ (=0.7), it is
difficult to distinguish between the regions of FM large po-
laron and FM small polaron since the change in y is small
and the curves for both y and Ei g are very smooth for
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Fig. 7. Variation of 6, x = —(n1(u1 — u2))/2g+(n1) and Exg
with g4 for e = 0 and 0.5 in absence of magnetic field for (a)
t = 0.7 and JS? = 0.05, and for (b) t = 1.5 and JS? = 0.075.
(¢) The magnetoresistance MR=(Exg(h) — Exge(0))/h as a
function of g, for t = 1.5, JS? = 0.075 and h = 0.04, h
represents the applied magnetic field.

disordered case. In Figure 7b we consider a higher value
of t (=1.5) with JS?/t = 0.05 as relevant for manganite
systems [28]. Here a crossover from the FM large pola-
ronic state to a FM small polaronic state with reduced
kinetic energy is seen for the disordered case, before the
transition to the AFM state. So the site disorder does not
make any drastic change to the qualitative features of the
ground-state properties of the double-exchange Holstein
model but smoothens the polaron crossover. In Figure 7c
we plot the change in Fx g due to the magnetic field (h) as
a function of g4. This quantity may be related to the mag-
netoresistance for a system in the thermodynamic limit as
pointed out in reference [25]. In general, the Ex g is a mea-
sure of delocalization of the polarons and its change with
the magnetic field gives field-induced delocalization of the
polaronic charge carriers. In reference [25] we reported for
the ordered case that for JSQ/t = 0.05 the change in Exg
due to the field has a broad peak around the FM-AFM
transition. We find that disorder makes the peak more
broader but the value of the change in Fx g remains al-
most the same. We believe that the magneto-resistance of
similar model system in the thermodynamic limit would
show similar qualitative features. We do not present here
the results for larger values of JS?/t where the magnetic
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transition coincides with the polaron crossover and the
change in the Ex g shows a sharp peak at the FM-AFM
transition [25] as we find that the site disorder does not
change that behavior.

5 Conclusions

To summarize, we have presented the results on the two-
site single polaron Holstein model in presence of a site
energy disorder ¢; which appears as a difference in site
energies. With increasing €z the retardation between the
electron and associated deformation becomes weaker and
the polaron crossover occurs at lower values of e-ph cou-
pling. The polaronic kinetic energy is suppressed apprecia-
bly with disorder in the range from weak to intermediate
couplings. However, in the strong-coupling region, where
only the non-diagonal hopping processes contribute to the
kinetic energy, it is independent of the disorder. For the
oscillator wavefunction, a broad peak in strong-coupling
region is observed for the ordered case (¢q = 0) in addi-
tion to the main peak. In presence of disorder (¢4 = 1.0),
this feature disappears. We find that even a small disorder
(eq = 0.001) can localize the electron in presence of e-ph
coupling. The polaron crossover precedes the localization
in the non-adiabatic regime for low to intermediate values
of disorder (eq < t).

For the double exchange Holstein model both the mag-
netic transition and polaron crossover shift toward lower
values of e-ph coupling with increasing disorder strength.
The qualitative features of the ground-state phase dia-
gram does not change much with disorder. The magneto-
resistance for the model shows up in a broader region of
parameter space in presence of disorder.
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